Abstract
Thin films of γ’-Fe4N were grown on polished (001) MgO substrates by molecular-beam epitaxy of iron in the presence of a gas flow from a rf atomic source. By means of x-ray diffraction, Mössbauer Spectroscopy, Rutherford backscattering/channeling, and scanning probe microscopy, it is shown that, with this method, single-phase, high-quality epitaxial thin films can be grown with a very smooth surface (root-mean-square roughness ∼0.4 nm). Magnetic measurements reveal square hysteresis loops, moderate coercivities (45 Oe for a 33 nm thick film) and complete in-plane orientation of the magnetization. These properties make the films interesting candidates for device applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.