Abstract

AbstractCopper(I) halide perovskite Cs3Cu2I5 has recently attracted tremendous interest and has been considered an exceptionally promising scintillator due to its high quantum yield. However, its slow scintillation decay time, previously considered an intrinsic property, is a significant drawback preventing its practical application and commercialization. But in this work, it is found that the high‐quality Cs3Cu2I5 single‐crystal grown by the designed aqueous solution method surprisingly exhibits a fast scintillation decay time of 39 ns (82%), quite different from previous reports. This subversive change may be due to the high crystal quality with denser 0D structure and low trap density (6.41 × 108 cm–3), changing the excited‐state structural deformation and accelerating the recombination of electrons and holes while directly reducing the prolongation of decay time caused by inherent defects. Moreover, the single‐crystal with a rocking curve FWHM value of only 50.4˝ has a high optical transmittance (85%), a very high absolute photoluminescence quantum yield (PLQY, 97.76%), superior environmental stability, and excellent light‐yield and energy resolution under different γ‐ray sources (241Am, 60Co, 22Na, 137Cs, 152Eu). These extraordinary properties pave the way for the subsequent development of practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call