Abstract

In this paper, the authors present a design technique that enables inter-resonator and external coupling control for high-quality-factor (Q) tunable bandpass filters. The design incorporates low-Q varactors as part of the inter-resonator and external coupling mechanisms without degrading the overall high Q of the original filter. Detailed design methodology and equations are presented to illustrate the concepts. A first-time demonstration of these concepts is presented for a widely tunable high-Q evanescent-mode cavity bandpass filter. The cavities are integrated in a low-loss substrate with commercially available piezoelectric actuators and solid-state varactors for frequency and bandwidth tuning. This technique allows for reduced bandwidth variation over large tuning ranges. As one example, a constant 25-MHz absolute-bandwidth filter in the 0.8-1.43-GHz tuning range with loss that is as low as 1.6 dB is presented as an example. The filter third-order intercept point is between 32.8 and 35.9 dBm over this tuning range. To further show the impact of the technique on high- Q filters, a filter Q that is as high as 750 is demonstrated in the range of 3-5.6 GHz, while using low-Q varactors (Q < 30 at 5 GHz for a 0.4-pF capacitance) to achieve more than 50% reduction in bandwidth variation over the tuning range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call