Abstract
We demonstrate a novel scheme to control the excitation symmetry for an odd mode in a photonic crystal waveguide and investigate the spectral signature of this slow light mode. An odd-mode Mach-Zehnder coupler is introduced to transform mode symmetry and excite a high-purity odd mode with 20 dB signal contrast over the background. Assisted by a mixed-mode Mach-Zehnder coupler, slow light mode beating can be observed and is utilized to determine the group index of this odd mode. With slow light enhancement, this odd mode can help enable novel miniaturized devices such as one-way waveguides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.