Abstract

The impact of high-pressure treatments (450 and 600MPa) on the morphological, thermal, structural, and barrier properties of commercial coextruded polylactide (PLA) packaging films has been explored to evaluate their applicability in food processing. Pouches filled with water as a food simulant were subjected to high-pressure treatment for 15min at ambient temperature. Results indicated no significant changes in the visual appearance, color, integrity, or water barrier properties of the post-process pouches. However, high-pressure treatment affected mechanical property results. Thermal analysis of the film showed endothermic double melting peaks (165.12 and 170.55°C), which did not change with the pressurization; however, the exothermic crystallization peak (118.08°C) varied significantly. Both SEM and AFM micrographs demonstrated that the surface morphology and roughness parameters (arithmetic mean [Sa ] and root mean square height [Sq ]) of the films were significantly affected by the HP treatment, which is further complemented by the FTIR spectra and XRD diffractogram. Melt rheology (175-205°C) of the pressure-treated films showed a significant drop (20-30%) in mechanical rigidity (G') when compared to the untreated sample. Changes in the microstructure/crystallinity in the PLA films were indicated by van Gurp and Palmen plot. PRACTICAL APPLICATION: The results reported here can help to improve the design of the coextruded packaging materials so that it can be successfully implemented to high-pressure processing and high pressure-assisted thermal processing of food.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.