Abstract
Severe plastic deformation through the high-pressure torsion (HPT) method was applied to pure aluminum with a wide range of purity levels such as 99% (A1100), 99.5% (A1050), 99.99% (4NAl), 99.999% (5NAl) and 99.9999% (6NAl). The hardness of 6NAl decreased with straining and saturated to a level below the hardness level of the annealed sample. This softening behavior, which was similar to the behavior of metals with low melting temperatures such as indium, tin, lead and zinc, was not observed in 5NAl or less pure Al. It was found that the grain-size dependence of hardness became less significant with increasing the purity level, while the HPT-processed 6NAl followed an inverse Hall-Petch relationship. In 6NAl with large grain sizes, dislocations accumulated in the grains in the form of dislocation cells and enhanced the hardness, but when the grain size was small, the dislocations moved fast and disappeared in high-angle grain boundaries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.