Abstract

Enzyme-rich cheeses are prone to over-ripening during refrigerated storage. Blue-veined cheeses fall within this category because of the profuse growth of Penicillium roqueforti in their interior, which results in the production of highly active proteinases, lipases, and other enzymes responsible for the formation of a great number of flavor compounds. To control the excessive formation of free fatty acids (FFA) and volatile compounds, blue-veined cheeses were submitted to high-pressure processing (HPP) at 400 or 600MPa on d 21, 42, or 63 after manufacture. Cheeses were ripened for 30d at 10°C and 93% relative humidity, followed by 60d at 5°C, and then held at 3°C until d 360. High-pressure processing influenced the concentrations of acetic acid and short-chain, medium-chain, and long-chain FFA. The effect was dependent on treatment conditions (pressure level and cheese age at the time of treatment). The lowest concentrations of acetic acid and FFA were recorded for cheeses treated at 600MPa on d 21; these cheeses showed the lowest esterase activity values. Acetic acid and all FFA groups increased during ripening and refrigerated storage. The 102 volatile compounds detected in cheese belonged to 10 chemical groups (5 aldehydes, 12 ketones, 17 alcohols, 12 acids, 35 esters, 9 hydrocarbons, 5 aromatic compounds, 3 nitrogen compounds, 3 terpenes, and 1 sulfur compound). High-pressure processing influenced the levels of 97 individual compounds, whereas 68 individual compounds varied during refrigerated storage. Total concentrations of all groups of volatile compounds were influenced by HPP, but only ketones, acids, esters, and sulfur compounds varied during refrigerated storage. The lowest total concentrations for most groups of volatile compounds were recorded for the cheese pressurized at 600MPa on d 21. A principal component analysis combining total concentrations of groups of FFA and volatile compounds discriminated cheeses by age and by the pressure level applied to HPP cheeses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call