Abstract

High-pressure synthesis is a powerful technique to stabilize metastable oxides, either containing transition metals in unusual oxidation states, or favouring the formation of dense perovskite-related phases. Happily, many solids synthesized at high pressure-high temperature conditions (where they are fhermodynamically stable) can be "quenched" to ambient conditions, where they are termodynamically metaestable, yet they remain indefinitely kinetically stable. In this paper we illustrate the example of a new family of oxides derived from the CaCu3Mn4O12 perovskite. We have studied the series of nominal composition NdCu3(Mn3M)O12 (M = Fe, Cr) where Mn is replaced by Fe(Cr) cations in the ferrimagnetic perovskite NdCu3Mn4O12. These materials have been synthesized in poly crystalline form under moderate pressure conditions of 2 GPa, in the presence of KClO4 as oxidizing agent. All the samples have been studied by neutron powder diffraction (NPD) below and above the ferromagnetic Curie temperatures. These oxides crystallize in the cubic space group Im3̄ (No. 204). Mn4+/Mn3+ and Fe3+(Cr3+) occupy at random the octahedral B positions of the perovskite structure. The materials have also been characterized by magnetic and magnetotransport measurements. All the samples are ferrimagnetic and show a decrease of TC upon Fe(Cr) introduction since these ions disturb the ferromagnetic interactions within this magnetic sublattice. The introduction of Fe changes the resistivity response from metallic to a semiconductor behavior. However, the magnetoresistance is still considerable at 300 K upon Fe doping, and it is enhanced at 100 K probably due to the decrease in the number of charge carriers from the pure oxide to the Fe-doped compound.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.