Abstract

57Fe Mossbauer studies at room temperature and temperature-dependent resistance studies have been performed on a natural specimen of cubanite (CuFe2S3) in a diamond-anvil cell at pressures up to ∼10 GPa. An insulator-metal phase transition occurs in the range 3.4–5.8 GPa coinciding with a previously observed structural transition from an orthorhombic to a hexagonal NiAs (B8) structure. The room temperature data shows that the metallization process concurs with a gradual transition from a magnetically ordered phase at low pressure to a nonmagnetic or paramagnetic phase at high-pressure. The change in magnetic behaviour at the structural transition may be attributed to a reduction of the Fe-S-Fe superexchange angle formed by edge-sharing octahedra occurring in the high-pressure phase. The non-magnetic or paramagnetic metallic phase at high pressure is retained upon decompression to ambient pressure-temperature conditions, indicative of substantial hysteresis associated with the pressure driven orthorhombic→hexagonal structural transition. The pressure evolution of both the 57Fe Mossbauer hyperfine interaction parameters and resistance behaviour is consistent with the transition from mixed-valence character in the low pressure orthorhombic structure to that of extended-electron delocalization in the hexagonal phase at high-pressure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.