Abstract
The effects of above-ambient pressure on ion mobility on resolving power, resolution, and ion current were investigated using a small, stand-alone ion mobility spectrometer (IMS). This work demonstrates the first example of ion mobility spectrometry at pressures above ambient. Ion mobility spectra of chemical warfare agent (CWA) stimulant dimethyl methylphosphonate (DMMP) and several other standard compounds are shown for superambient conditions. The IMS was operated at pressures from 700 to 4560 Torr. An optimal resolving power was obtained at a specific voltage as a function of pressure, with higher optimal resolving powers obtained at higher voltages, as predicted from standard IMS theory. At high pressures, however, resolving power did not increase as much as theory predicted, presumably due to ion clustering. Nevertheless, an increase in pressure was found to improve resolution in IMS. One example where high pressure improved resolution was the separation of cyclohexylamine (K(0) = 1.83) and 2-hexanone (K(0) = 1.86) (where K(0) is the reduced mobility value). The product ions of these two compounds could not be separated at ambient pressure but could be nearly baseline separated when the pressure of the buffer gas was raised to 2280 Torr. Total ion current was also examined at pressures from ambient up to 4560 Torr. Total ion current, when investigated with pressure, was found to reach a maximum, initially rising with increased pressure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.