Abstract

The two rhodium complexes [Rh(acac)(L(R))] (L(R)=(S,S)-5,11,17,23-tetra-tert-butyl-25,27-di(OR)-26,28-bis(1,1'-binaphthyl-2,2'-dioxyphosphanyloxy)calix[4]arene; 6: R=benzyl, 7: R=fluorenyl), each based on a hemispherical chelator forming a pocket about the metal centre upon chelation, are active in the hydroformylation of 1-octene and styrene. As expected for this family of diphosphanes, both complexes resulted in remarkably high selectivity towards the linear aldehyde in the hydroformylation of 1-octene (l/b≈15 for both complexes). Linear aldehyde selectivity was also observed when using styrene, but surprisingly only 6 displayed a marked preference for the linear product (l/b=12.4 (6) vs. 1.9 (7)). A detailed study of the structure of the complexes under CO or CO/H(2) in toluene was performed by high-pressure NMR (HP NMR) and FT-IR (HP-IR) spectroscopies. The spectroscopic data revealed that treatment of 6 with CO gave [Rh(acac)(CO)(η(1)-L(benzyl))] (8), in which the diphosphite behaves as a unidentate ligand. Subsequent addition of H(2) to the solution resulted in a well-defined chelate complex with the formula [RhH(CO)(2)(L(benzyl))] (9). Unlike 6, treatment of complex 7 with CO only led to ligand dissociation and concomitant formation of [Rh(acac)(CO)(2)], but upon addition of H(2) a chelate complex analogous to 9 was formed quantitatively. In both [RhH(CO)(2)(L(R))] complexes the diphosphite adopts the bis-equatorial coordination mode, a structural feature known to favour the formation of linear aldehydes. As revealed by variable-temperature NMR spectroscopy, these complexes show the typical fluxionality of trigonal bipyramidal [RhH(CO)(2)(diphosphane)] complexes. The lower linear selectivity of 7 versus 6 in the hydroformylation of styrene was assigned to steric effects, due to the pocket in which the catalysis takes place being less adapted to accommodate CO or larger olefins and, therefore, possibly leading to facile ligand decoordination. This interpretation was corroborated by an X-ray structure determination carried out for 7.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.