Abstract

Spinel-lherzolite xenoliths have been found in olivine tholeiite near Andover in the Tasmanian Tertiary volcanic province. They show a high-pressure mineralogy of predominant olivine (Mg 90), with aluminous enstatite (Mg 90) and lesser aluminous diopside and chrome-bearing spinel, and resemble lherzolite xenoliths commonly found in undersaturated lavas. Such xenoliths are unusual in tholeiitic basalts and the occurrence directly attests to a mantle origin for at least some tholeiitic magmas. The lherzolites are accompanied by doleritic and pyroxenitic xenoliths and by olivine, orthopyroxene, clinopyroxene and plagioclase xenocrysts. If near-liquidus phases are represented amongst the xenocrysts, then the magnesian number of the host basalt and its xenocryst assemblage provisionally suggest a magma derived by more than 15–20% partial melting of mantle peridotite, before commencing xenocryst crystallisation at pressures between 8–13 kbar. With this new record, lherzolite-bearing lavas in Tasmania now cover an extremely wide compositional range, extending from highly undersaturated olivine melilitite to olivine tholeiite. They also include a considerable number of fractionated alkaline rocks that are only sparsely reported in the literature as lherzolite hosts. This latter group contains representatives of a previously suggested but unestablished alkaline fractionation series based on olivine nephelinite, viz. calcic olivine nephelinite → sodic olivine nephelinite → potassi-sodic olivine nephelinite → mafic nepheline benmoreite → mafic phonolite. Lherzolite and megacryst-bearing lavas are relatively more abundant in peripheral parts to the main basalt sequences in Tasmania. This suggests that they developed in fringing zones of less intense mantle melting which enhanced stagnation and fractionation of magmas within the mantle before eruption. Calculated crustal thicknesses under these areas suggest that the magmas were generated at pressures exceeding 6–11 kbar, with the Andover tholeiitic magma exceeding 9 kbar.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call