Abstract
Phase relations in FeTiO3 were precisely determined at 25–35 GPa and 600–1600 °C using multianvil high-pressure experiments with tungsten carbide anvils. Pressure generation up to about 36 GPa at 1600 °C was evaluated using Al2O3 solubility in MgSiO3 perovskite (Pv) in the system MgSiO3–Al2O3. At about 28 GPa, FeTiO3 Pv dissociates into an assemblage of calcium titanate (CT)-type Fe2TiO4 + orthorhombic-I (OI)-type TiO2 below 1200 °C. However, above 1200 °C at 28 GPa, FeTiO3 Pv decomposes into a new, denser phase assemblage of CT-type Fe2TiO4 + a new compound of FeTi2O5. The new phase FeTi2O5 was recovered as an amorphous phase at 1 atm. In situ X-ray diffraction experiments at 35.1 GPa indicated that the new phase (N-p) FeTi2O5 has orthorhombic symmetry with cell parameters a = 8.567(2) A, b = 5.753(1) A and c = 5.257(1) A. In addition, the assemblage of CT-type Fe2TiO4 + OI-type TiO2 changes to FeO wustite (Wu) + OI-type TiO2 at about 33 GPa below 1000 °C. The phase assemblages in FeTiO3 are denser in the order: FeTiO3 (Pv) → 1/2Fe2TiO4 (CT) + 1/2TiO2 (OI) → 1/3Fe2TiO4 (CT) + 1/3FeTi2O5 (N-p) → FeO (Wu) + TiO2 (OI). Our results indicate that the upper stability limit of FeTiO3 Pv is about 28 GPa at 600–1600 °C. This puts a constraint on peak shock pressure for formation of naturally discovered lithium niobate-type FeTiO3 which was interpreted to be retrograde transition product of FeTiO3 Pv on release of shock pressure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.