Abstract

The high-pressure electrical transport behavior of microcrystalline tungsten trioxides (WO3) was investigated by direct current electrical resistivity measurement and alternate current impedance spectrum techniques in a diamond anvil cell up to 35.5 GPa. Discontinuous changes of electrical resistivity occurred during the pressure induced structure phase transitions at 1.8, 21.2, and 30.4 GPa. The irreversible resistivity reveals that the structure phase transition is not reversible. In addition, the abnormal changes of bulk resistance and transport activation energy at about 3 and 10 GPa are related to the isostructural phase transition reported by previous Raman study. The temperature induced resistivity change indicates that WO3 is a semiconductor from ambient pressure to 25.3 GPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.