Abstract

In large-aperture interferometry, achieving high-precision phase shifting for heavy-load reference mirrors is challenging. This study introduces a method based on nano-precision grating sensor monitoring. The technique utilizes spatial three-point synchronous driving by piezoelectric ceramics, combined with flexible hinges, to enable nanoscale phase shifting of heavy-load reference mirrors. Additionally, it integrates in-situ PID closed-loop drive monitoring at these three points, using nano-precision grating sensors and piezoelectric ceramics. To ensure nanoscale resolved spatial translation, the mirrors are supported by air-bearings that counteract gravity, coupled with a phase shift error calibration model. The final realization of high-precision and high-stability mechanical phase shifting in large-aperture interferometry circumvents the principle defects of existing large-aperture wavelength-tuned phase shifting. The experiments show that the established mechanical phase shifting system with heavy-load reference mirror has a resolution of 1.5 nm, a frequency response of 116 Hz, and a synchronization accuracy of 2° for the three phase shifting quantities, and the method provides a new method and means of phase shifting for the construction of large-aperture phase shifting interferometer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call