Abstract

In this paper, a surface plasmon resonance (SPR) spectroscopic ellipsometry, based on Otto-Bliokh configuration, is developed for the measurement of thickness and optical constants of ultra-thin coatings. This technique combines sensitivity of surface plasmon with accessibility of optical constants and other advantages of ellipsometry. Surface plasmons (SP) are generated in the sample under test in total reflectance mode and SP geometric distribution over the sample surface is influenced by the coating thickness and optical properties on one hand, and by the air gap thickness on the other hand. Nanoscale control of the thickness of the air gap between a convex surface and the sample was assured using a micron-size beam spot irradiating the contact zone. The amplitude and phase change induced by SPR in the visible and near-infrared spectral range were obtained to determine the dispersion of optical constants and the thickness of the ultra-thin layer. The extracted optical constants were found to be in excellent agreement with the results obtained using TEM and XRR techniques. Both theoretical analysis and experimental results demonstrated high sensitivity and precision of the proposed technique for the analysis of coatings of both metals and dielectrics on metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.