Abstract

This paper deals with cutting force monitoring for high-precision machining. The authors have employed displacement sensors to monitor the cutting forces, as they are cheap and small enough to be built in the spindle structure. A monitoring method, which utilizes sensitive displacement sensors, is discussed. The sensors are installed in X–Y directions near the front bearings of the spindle to detect the small displacements of a spindle caused by cutting forces. Monitoring tests are carried out under end-milling operations and the cutting forces are estimated from the displacement signals by the simple signal processing technique. However, as the displacement sensor measures the variation of the gap size between the sensor head and the target surface, it also records displacements due to error motion of a spindle's axis of rotation in radial direction and roundness errors of the target surface. By comparing the cutting force estimated from displacement sensors with the cutting force measured by using a dynamometer, the machine tool spindle error motions are investigated, and its compensation scheme is proposed. The test results show that the monitoring system is reliable for the adaptive control of machining accuracy for end-milling process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.