Abstract

In this paper an adaptive unscented Kalman filter based mixing filter is used to develop a high-precision kinematic satellite aided inertial navigation system with a modern receiver that incorporates carrier phase smoothing and ambiguity resolution. Using carrier phase measurements with multiple antennas, in addition to a set of typical pseudo-range estimates that can be obtained from a satellite navigation system such as GPS or GLONASS, the feasibility of generating high precision estimates of the typical outputs from an inertial navigation system is demonstrated. The methodology may be developed as a stand-alone system or employed in conjunction with a traditional strapped down inertial navigation system for purposes of initial alignment. Moreover the feasibility of employing adaptive mixing facilitates the possibility of using the system in an interoperable fashion with satellite navigation measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call