Abstract

Abstract Although composite materials like wood, vulcanized fiber and carbon reinforced plastic (CFRP) are already investigated by means of their mechanical properties, the abrupt fracture mechanism as well as the deformation behavior right before and after fracture has not been investigated. However, it is marginally investigated for CFRP because of the quite high fracture speed. The knowledge about the damage evolution as the crack start and propagation can help to improve the strength and sensitivity to fracture by improving the materials structure and to utilize these materials for structural applications. For the investigated materials, fracture happens abruptly as it is the nature of composites and the detailed fracture mechanisms could not be detected by conventional measurement techniques. Therefore, an innovative combination of testing devices is presented which is able to fill this gap. Tensile tests were performed to receive conventional stress-strain curves. At the fracture stage, a high-speed camera recorded the fracture process. This information could be combined with digital image correlation (DIC) to visualize the deformation behavior. At the same time acoustic emission (AE) was used to detect the spectrum of mechanical vibrations which gives information about the released energy due to fracture. The challenging triggering of the high-speed camera was solved for each material individually. By using improved light sources, the recording speed could be set up to 2 million frames per second (Mfps). The investigations show different fracture mechanisms for each composite. Wood and vulcanized fiber were also investigated in different directions due to their anisotropy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.