Abstract

We describe a new method of calculation of generic multi-loop master integrals based on the numerical solution of systems of difference equations in one variable. We show algorithms for the construction of the systems using integration-by-parts identities and methods of solutions by means of expansions in factorial series and Laplace's transformation. We also describe new algorithms for the identification of master integrals and the reduction of generic Feynman integrals to master integrals, and procedures for generating and solving systems of differential equations in masses and momenta for master integrals. We apply our method to the calculation of the master integrals of massive vacuum and self-energy diagrams up to three loops and of massive vertex and box diagrams up to two loops. Implementation in a computer program of our approach is described. Important features of the implementation are: the ability to deal with hundreds of master integrals and the ability to obtain very high precision results expanded at will in the number of dimensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.