Abstract

Most reported thermoelectric modules suffer from considerable power loss due to high electrical and thermal resistivity arising at the interface between thermoelectric legs and metallic contacts. Despite increasing complaints on this critical problem, it has been scarcely tackled. Here we report the metallization layer of Fe–Ni alloy seamlessly securing skutterudite materials and metallic electrodes, allowing for a minimal loss of energy transferred from the former. It is applied to an 8-couple thermoelectric module that consists of n-type (Mm,Sm)yCo4Sb12 (ZTmax = 0.9) and p-type DDyFe3CoSb12 (ZTmax = 0.7) skutterudite materials. It performs as a diffusion barrier suppressing chemical reactions to produce a secondary phase at the interface. Consequent high thermal stability of the module results in the lowest reported electrical contact resistivity of 2.2–2.5 μΩ cm2 and one of the highest thermoelectric power density of 2.1 W cm–2 for a temperature difference of 570 K. Employing a scanning transmission el...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.