Abstract

Asymmetric separate-confinement laser heterostructures with ultrawide waveguides based on AlGaAs/GaAs/InGaAs solid solutions, with an emission wavelength of ∼1080 nm, are grown by MOCVD. The optical and electrical properties of mesa-stripe lasers with a stripe width of ∼100 μm are studied. Lasers based on asymmetric heterostructures with ultrawide (>1 μm) waveguides demonstrate lasing in the fundamental transverse mode with an internal optical loss of as low as 0.34 cm−1. In laser diodes with a cavity length of more than 3 mm, the thermal resistance is reduced to 2°C/W, and the characteristic temperature T0= 10°C is obtained in the range 0–100°C. A record-breaking wallplug efficiency of 74% and an output optical power of 16 W are reached in CW mode. Mean-time-between-failures testing for 1000 h at 65°C with an operation power of 3–4 W results in the power decreasing by 3–7%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call