Abstract

NIST has been tasked by DARPA to provide wall plug efficiency and spectral measurements of high-power high-efficiency laser diodes and arrays for DARPA’s Super High Efficiency Diode Sources (SHEDS) program. To meet the needs for this project, the Optoelectronics Division has developed a new laboratory at NIST to measure electrical power, optical power, wavelength and line width, and junction temperature for lasers supplied by project participants. We describe a novel flowing-water optical power meter (FWOPM) that we have developed to meet the unique optical power measurement challenges presented by these lasers. We have also developed a new method for determining the average laser junction temperature through a simple model of laser waste heat as a function of drive current and cooling temperature. In addition, we present a preliminary uncertainty analysis that yields ∼1 % uncertainty (with a confidence interval of 95 %) for the efficiency measurements. We intend to continue offering these measurements as part of the NIST Calibration Services for optical radiation measurements, which are available to anyone for a fee.NIST has been tasked by DARPA to provide wall plug efficiency and spectral measurements of high-power high-efficiency laser diodes and arrays for DARPA’s Super High Efficiency Diode Sources (SHEDS) program. To meet the needs for this project, the Optoelectronics Division has developed a new laboratory at NIST to measure electrical power, optical power, wavelength and line width, and junction temperature for lasers supplied by project participants. We describe a novel flowing-water optical power meter (FWOPM) that we have developed to meet the unique optical power measurement challenges presented by these lasers. We have also developed a new method for determining the average laser junction temperature through a simple model of laser waste heat as a function of drive current and cooling temperature. In addition, we present a preliminary uncertainty analysis that yields ∼1 % uncertainty (with a confidence interval of 95 %) for the efficiency measurements. We intend to continue offering these measurements as...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.