Abstract

The role of a robust impurity free quantum well intermixing process in fabricating high-power high-brightness AlGaInP semiconductor laser diodes is outlined. Characteristics of the process are discussed and its attributes summarized. Bandgap shifted lasers have been fabricated to demonstrate the integrity of the material after the quantum well intermixing process. Oxide stripe lasers with non-absorbing mirrors are shown to increase the catastrophic optical damage threshold of semiconductor laser devices. Finally high brightness extended cavity lasers are shown to significantly improve the beam quality, and the insignificant change in the threshold current and slight decrease of the external efficiency demonstrates that the process is low loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call