Abstract
In general, various kinds of surface modifications are utilized to enhance the power output performance of triboelectric nanogenerators (TENGs), but they typically have limited stability. Here, a new strategy of adding electrolytes with asymmetric ion pairing to polymer friction layers of TENGs is introduced in order to enhance their triboelectric property. Indeed, Kelvin probe force microscopy (KPFM) measurements show that an addition of phosphoric acid (H3PO4 ), an electrolyte with more cations than anions, to polyvinyl alcohol (PVA) can make it one of the most negative triboelectric materials; whereas, an addition of calcium chloride (CaCl2 ), an electrolyte with more anions than cations, to PVA can make it one of the most positive triboelectric materials. Furthermore, the TENGs based on such solid polymer electrolytes (SPEs) produce significantly higher power output than typical metal‐polymer TENGs. Due to these unique features, SPEs are a promising triboelectric material for realizing high‐performance TENGs for self‐powered small electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.