Abstract

We fabricated a thin-film composite (TFC) forward osmosis (FO) membrane with an ultrathin spray-coated carbon nanotube (CNT) interlayer. The impact of the CNT interlayer on the polyamide (PA) layer structural properties and transport behavior in FO were investigated. Results indicate that the CNT interlayer provides an interface which enables the formation of a highly permeable and selective PA layer with a large effective surface area for water transport, while inhibiting the formation of a flower-like PA structure inside the substrate pores. The TFC-FO membrane with the CNT interlayer exhibited a much greater water flux than previously reported for FO membranes, while maintaining comparable salt rejection. Specifically, a membrane perm-selectivity or ratio of water (A) to salt permeability coefficients (B) (A/B value) of 39 bar–1 was achieved for the TFC-PA-CNT membrane. Implications of the results for the fabrication of high-performance TFC-FO membranes are further discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call