Abstract

The synthesis of a highly porous composite of ZIF-67 and reduced graphene oxide (rGO) using a simple stirring approach is reported. The composite has been investigated as an electrode to be assembled in a supercapacitor. In the presence of an optimized redox additive electrolyte (RAE), that is, 0.2 M K3[Fe(CN)6] in 1 M Na2SO4, the ZIF-67/rGO composite electrode has combined the properties of improved conductivity, high specific surface area, and low resistance. The proposed composite electrode in the three-electrode system shows an ultrahigh specific capacitance of 1453 F g–1 at a current density of 4.5 A g–1 within a potential window of −0.1 to 0.5 V. Further, the ZIF-67/rGO composite electrode was used to fabricate a symmetrical supercapacitor whose operation in the presence of the RAE has delivered high values of specific capacitance (326 F g–1 at a current density of 3 A g–1) and energy density (25.5 W h kg–1 at a power density of 2.7 kW kg–1). The device could retain about 88% of its initial specific capacitance after 1000 repeated charge–discharge cycles. The practical usefulness of the device was also verified by combining two symmetrical supercapacitors in series and then lighting a white light-emitting diode (illumination for 3 min). This study, for the first time, reports the application of a ZIF-based composite (ZIF-67/rGO) in the presence of an RAE to design an efficient supercapacitor electrode. This proposed design is also scalable to a flexible symmetric device delivering high values of specific capacitance and energy density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call