Abstract

Epoxy resin (EP) as common polymers have attracted much attention in the field of shape memory materials due to their excellent properties. However, epoxy-based shape memory polymers suffer from a trade-off between strength, toughness, variable stiffness capability and shape memory properties, and thus are subject to significant limitations in their applications. In this paper, we propose a method to prepare epoxy composites with high strength and toughness and high shape memory properties by introducing a lot of hydrogen bonds. Hydrogen bonding is generated through polycaprolactone (PCL) induced EP phase separation. A low melting point alloy (L) was also added to enhance the shape memory properties of the composites. The synthesis mechanism of EP and the formation mechanism of hydrogen bonding were revealed. The effects of the introduction of hydrogen bonding on the mechanical properties, stiffness and shape memory properties of the composites were investigated. New ideas and design directions are provided for the optimisation of modification of high-performance shape memory epoxy resins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.