Abstract

A novel gray-box model is proposed to estimate molten steel temperature in a continuous casting process at a steel making plant by combining a first-principle model and a statistical model. The first-principle model was developed on the basis of computational fluid dynamics (CFD) simulations to simplify the model and to improve estimation accuracy. Since the derived first-principle model was not able to estimate the molten steel temperature in the tundish with sufficient accuracy, statistical models were developed to estimate the estimation errors of the first-principle model through partial least squares (PLS) and random forest (RF). As a result of comparing the three models, i.e., the first-principle model, the PLS-based graybox model, and the RF-based gray-box model, the RF-based gray-box model achieved the best estimation performance. Thus, the molten steel temperature in the tundish can be estimated with accuracy by adding estimates of the first-principle model and those of the statistical RF model. The proposed gray-box model was applied to the real process data and the results demonstrated its advantage over other models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.