Abstract
A reverse osmosis (RO) membrane with a high water permeance and salt rejection is needed to reduce the energy requirement for desalination and water treatment. However, improving water permeance while maintaining a high rejection of the polyamide RO membrane remains a great challenge. Herein, we report a rigid-flexible coupling strategy to prepare a high-performance RO membrane through introducing monoamine with a flexible aliphatic ring (i.e., piperidine (PPR)) into the interfacial polymerization (IP) system of trimesoyl chloride (TMC) and m-phenylenediamine (MPD). The resulted polyamide film consists of a robust aromatic skeleton and soft aliphatic-ring side chain, where the aliphatic ring optimizes the microstructure of polyamide network at a molecular level. The obtained membranes thereby showed an enhanced water permeance of up to 2.96 L·m-2 h-1 bar-1, nearly a 3-fold enhancement compared to the control group, meanwhile exhibiting an ultrahigh rejection toward NaCl (99.4%), thus successfully overcoming the permeability-selectivity trade-off limit. Furthermore, the mechanism of the enhanced performance was investigated by molecular simulation. Our work provides a simple way to fabricate advanced RO membranes with outstanding performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.