Abstract

Tin oxide (SnO2) has been commonly used as an electron transport layer (ETL) in planar perovskite solar cells (p-PSCs) because it can be prepared by a low-temperature solution-processed method. However, the device performance has been restricted due to the limited electrical performance of SnO2 and its mismatched energy level alignment with the perovskite absorber. Considering these problems, sodium tungstate (Na2WO4) has been employed to modify the SnO2 ETL. The conduction band minimum of SnO2 increases and the defects at the ETL/perovskite interface decrease by the modification of the SnO2 ETL with Na2WO4, thus reducing the energy barrier between the ETL and perovskite. In addition, the electron extraction ability has been enhanced and the interface recombination between the ETL and perovskite has also been inhibited. As a result, the photovoltaic performance of p-PSCs based on the modified ETL has been improved, and a champion power conversion efficiency of 21.16% has been achieved compared with the control device of 17.30% with an open circuit voltage increased from 1.075 to 1.162 V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.