Abstract
We propose that a photodetector based on nanotubes formed from layered structure may have a faster response than nanowires or nanobelts. The layered compound tungsten disulfide (WS2) can absorb visible and near-infrared lights. We fabricated photodetectors based on individual WS2 nanotubes. The photodetectors exhibited a remarkable response to excitation with 633 and 785 nm light. The nanotube-based photodetectors exhibited short rise and decay times of a few hundred μs, high on/off ratio, and high spectral responsivity and external quantum efficiency. Our results imply that WS2 nanotubes are prospective candidates for high-performance nanoscale optoelectronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.