Abstract

The requirement for narrow linewidth lasers or short-loop propagation delay makes the realization of optical phase-lock loops using semiconductor lasers difficult. Although optical injection locking can provide low phase error variance for wide linewidth lasers, the locking range is restricted by stability considerations. Theoretical and experimental results for a system which combines both techniques so as to overcome these limitations, the optical injection phase-lock loop (OIPLL), are reported. Phase error variance values as low as 0.006 rad/sup 2/ (500 MHz bandwidth) and locking ranges exceeding 26 GHz were achieved in homodyne OIPLL systems using DFB lasers of summed linewidth 36 MHz, loop propagation delay of 15 ns and injection ratio less than -30 dB. Phase error variance values as low as 0.003 rad/sup 2/ in a bandwidth of 100 MHz, a mean time to cycle slip of 3/spl times/10/sup 10/ s and SSB noise density of -94 dBc/Hz at 10 kHz offset were obtained for the same lasers in an heterodyne OIPLL configuration with loop propagation delay of 20 ns and injection ratio of -30 dB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call