Abstract

Abstract High-performance permanent magnets play an indispensable role in manufacturing highly efficient motors and generators, ultimately contributing to the sustainability of our planet. Achieving high coercivity (μ 0 H c) in hard magnetic materials at or above room temperature without relying on heavy rare-earth elements remains a challenge. Effective strategies for augmenting μ 0 H c utilizing low-cost materials involve inter-granular addition and the grain-boundary diffusion (GBD) processes. This review provides a comprehensive overview of selected techniques for developing grain-boundary (GB) modification through a specific focus on the reduction of using heavy rare earth (HRE) elements and utilizing cost-effective non-rare earth and light rare earth (LRE) sources for GBD. To date, the successful application of HRE based metals and compounds, and LRE based alloys as diffusion sources has significantly contributed to μ 0 H c enhancement. Drawing upon global advancements and findings from various research groups, this comprehensive review offers a critical analysis of the fundamentals and progress in GBD processes (GBDPs). Considering the different types of permanent magnets, the GBDPs, based on the diverse diffusion sources and diffusion processes, are thoroughly compared and summarized. This encapsulates the current state of knowledge in the field, providing valuable insights into the ongoing developments in GB modification to improve permanent magnet performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.