Abstract

Chemical vapor deposition-grown graphene has been an attractive electrode material for organic electronic devices, such as organic field-effect transistors (OFETs), because it is highly conductive and provides good oxidation and thermal stability properties. However, it still remains a challenge to demonstrate organic complementary circuits using graphene electrodes because of the relatively poor performance of n-type OFETs. Here, we report the development of high-performance organic complementary inverters using graphene as source/drain electrodes and N, N'-ditridecyl-3,4,9,10-perylenetetracarboxylic diimide (PTCDI-C13) and pentacene as n- and p-type organic semiconductors, respectively. Graphene electrodes were n-doped via the formation of NH2-terminated self-assembled monolayers that lowered the work function and the electron injection barrier between the graphene and PTCDI-C13. Thermal annealing improved the molecular packing among PTCDI-C13 groups on the graphene surface, thereby increasing the crystallinity and grain size. The thermally annealed PTCDI-C13 OFETs prepared using n-doped graphene electrodes exhibited a good field-effect mobility of up to 0.43 cm2/(V s), which was comparable to the values obtained from other p-type pentacene OFETs. By integrating p- and n-type OFETs, we successfully fabricated organic complementary inverters that exhibited highly symmetric operation with an excellent voltage gain of up to 124 and good noise margin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call