Abstract

The outstanding performance of NiOOH/FeOOH-based oxygen evolution reaction (OER) catalysts is rationalized in terms of a bifunctional mechanism involving two distinct active sites. In this mechanism, the OOHads reaction intermediate, which unfavorably affects the overall OER activity due to the linear scaling relationship, is replaced by O2 adsorbed at the active site on FeOOH and Hads adsorbed at the NiOOH substrate. Here, we use the computational hydrogen electrode method to assess promising models of both the FeOOH catalyst and the NiOOH hydrogen acceptor. These two materials are interfaced in various ways to evaluate their performance as bifunctional OER catalysts. In some cases, overpotentials as low as 0.16 V are found, supporting the bifunctional mechanism as a means to overcome the limitations imposed by linear scaling relationships.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.