Abstract
Controlling the bandwidth and directionality of thermal emission is important for a broad range of applications, from imaging and sensing to energy harvesting. Here, we propose a new, to the best of our knowledge, type of long-wavelength infrared narrowband thermal emitter that is basically composed of aperiodic Tamm plasmon polariton structures. Compared to the thermal emitter based on periodic structures, more parameters need to be considered. An inverse design algorithm instead of traditional forward methodologies is employed to do the geometric parameter optimization. Both theoretical and experimental results show that the thermal emitter exhibits a narrowband thermal emission peak at the wavelength of 8.6 µm in the normal direction. The angular response of emission properties of the thermal emitter is dependent on the emission angle. We believe that our proposed thermal emitter provides an alternative for low-cost, high-effective narrowband mid-infrared light sources and would have a great potential in many applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.