Abstract

Comprehensive high-performance epoxy nanocomposites were successfully prepared by co-incorporating two-dimensional montmorillonite (MMT) and zero-dimensional nanoTiO2 into epoxy. Mechanical tests and thermal analyses showed that the resulting epoxy/MMT/nanoTiO2 nanocomposites obtained great improvements over pure epoxy, epoxy/MMT nanocomposites, and epoxy/nanoTiO2 nanocomposites in tensile modulus, tensile strength, flexural modulus, flexural strength, notch impact strength, glass transition temperature, and thermal decomposition temperature. The best performance occurred with the nanocomposite containing 5 phr MMT/nanoTiO2. At this loading, the tensile modulus increased by 154.75, 35.69, and 89.56%, the tensile strength by 81.53, 143.46, and 22.01%, the flexural modulus by 21.12, 6.04, and 3.31%, the flexural strength by 25.25, 16.98, and 9.73%, the notch impact strength by 65.57, 37.23, and 25.94%, the glass transition temperature by 11.3, 12.2, and 11.4 °C, and the thermal decomposition temperature by 15.3, 3.0, and 3.2 °C as compared with those of pure epoxy, 5 phr epoxy/MMT nanocomposite and 5 phr epoxy/nanoTiO2 nanocomposite, respectively. X-ray diffraction and transmission electron microscopy inspection revealed that in the epoxy/MMT/nanoTiO2 nanocomposites, the MMT was completely exfoliated into two-dimensional nanoscale mono-platelets, which formed special intermingled structure with the zero-dimensional nanoTiO2 spheres. This study suggests that co-incorporating two proper, dimensionally different nanomaterials into polymer matrices could be a pathway to success in preparing comprehensive high-performance polymer nanocomposites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.