Abstract

Two-dimensional (2D) nanomaterials have become a new class of microwave absorption (MA) materials due to their high specific surface area and peculiar electronic properties. In this study, MoS2/graphene 2D hybrid nanosheets with isomorphic hetero-structures are prepared by liquid exfoliation and hydrothermal reaction. Their chemical composition and morphology are characterized and their MA properties are also investigated comprehensively. The minimum reflection loss (RL) value of an absorber containing wax and 20 wt% MoS2/graphene hybrid nanosheets (MoS2/GN) is −55.3 dB at a thickness of only 1.6 mm. The largest effective absorption bandwidth is up to 5.6 GHz for an absorber containing wax and 15 wt% MoS2/GN at a thickness of 2.2 mm. The enhanced MA performance of MoS2/GN is attributed to the high electrical conductivity of graphene and the multiple MoS2/graphene interfaces in the heterogeneous structures. The results suggest that those light-weight MoS2/graphene hybrid nanosheets are very promising materials for electromagnetic wave absorbing, which can exhibit broad effective absorption bandwidth in the absorber containing low loadings of MA materials at a small thickness. Besides, the facile preparation of MoS2/graphene hybrid nanosheets reported in this work provides a feasible and effective approach in the synthesis of high-performance 2D MA nanomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.