Abstract
All-solid-state Li-S batteries are promising candidates for next-generation energy-storage systems considering their high energy density and high safety. However, their development is hindered by the sluggish electrochemical kinetics and low S utilization due to high interfacial resistance and the electronic insulating nature of S. Herein, Se is introduced into S cathodes by forming SeSx solid solutions to modify the electronic and ionic conductivities and ultimately enhance cathode utilization in all-solid-state lithium batteries (ASSLBs). Theoretical calculations confirm the redistribution of electron densities after introducing Se. The interfacial ionic conductivities of all achieved SeSx -Li3 PS4 (x = 3, 2, 1, and 0.33) composites are 10-6 S cm-1 . Stable and highly reversible SeSx cathodes for sulfide-based ASSLBs can be developed. Surprisingly, the SeS2 /Li10 GeP2 S12 -Li3 PS4 /Li solid-state cells exhibit excellent performance and deliver a high capacity over 1100 mAh g-1 (98.5% of its theoretical capacity) at 50 mA g-1 and remained highly stable for 100 cycles. Moreover, high loading cells can achieve high areal capacities up to 12.6 mAh cm-2 . This research deepens the understanding of Se-S solid solution chemistry in ASSLB systems and offers a new strategy to achieve high-performance S-based cathodes for application in ASSLBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.