Abstract
This investigation deals with protein retention behaviour in high-performance anion-exchange chromatography in terms of the average distance of approach between the protein solute and the positively charged anion-exchange stationary-phase surface. The theoretical treatment is based on a modified Debye-Hückel theory for spherical impenetrable ions, where the electrostatic potential energy has been related to the chromatographic capacity factor, k′. Results are presented for three globular proteins, eluted isocratically from a Mono-Q strong anion-exchange resin with sodium choride as the displacer salt by a mobile phase with pH in the range 5.50-9.60. Analysis of experimental retention data indicates that topographically predefined, charged regions on the protein surface, called ionotopes, control the orientation and approach distance of the protein solute.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.