Abstract
La–Mg–Ni-based hydrogen storage alloys showed good application prospects owing to their high hydrogen storage capacity. However, the poor cycling stability was a key problem. In order to improve the cycling stability, low cost YFe0.85 master alloy was used as raw material to prepare La–Mg–Ni-based La0.8-xYxMg0.2Ni3-0.85xFe0.85x (x = 0.50, 0.55, 0.60) hydrogen storage alloys by powder sintering method. The alloys were mainly composed of PuNi3 phase and MgCu4Sn phase. With the increase of Y and Fe, the cell parameters of PuNi3 phase decreased. Lower mismatch coefficient promoted the cycling stability. As the case of x = 0.60, the capacity retention rate rose up to 95.45%. Aside from the cycling stability, appropriate substitution content contributed to higher capacity and satisfactory kinetics. As the case of x = 0.55, the hydrogen storage capacity reached 1.529 wt%, and hydriding time for the x = 0.60 alloy shrank to 76.7% of that for alloys without Y and Fe at 303 K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.