Abstract

The photovoltaic stability of polymer solar cells (PSCs) can be greatly improved by adopting an inverted device structure. This paper reports high-performance inverted PSCs with lead monoxide (PbO)-modified indium tin oxide (ITO) as the cathodes. A thin PbO layer can effectively lower the work function of ITO from 4.5 to 3.8 eV. The optimal inverted PSCs with poly(3-hexylthiophene) (P3HT) as the donor and [6,6]-phenyl-C 61-butyric acid methyl ester (PCBM) as the acceptor exhibited high photovoltaic performance: open-circuit voltage of 0.59 V, short-circuit current density of 10.8 mA cm −2, fill factor of 0.632, and power conversion efficiency of 4.00% under simulated AM1.5G illumination (100 mW cm −2). The photovoltaic efficiency is significantly higher than that of the control inverted PSCs with unmodified ITO as the cathode. It is even better than that of the control PSCs with normal architecture, which have an optimal efficiency of 3.5%. The lowering in the work function by the PbO modification is attributed to the charge transfer between PbO and ITO, as evidenced by the X-ray photoelectron spectra.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call