Abstract
In recent years, optical biosensors widely applicable for medical applications, have received much attention. In this paper, we propose a high-performance polarization-insensitive optical biosensor based on a graphene-dielectric metasurface. The metasurface consists of an asymmetric dielectric disk array that supports a high Q-factor Fano resonance. The provided sharp Fano resonance results in an enhanced light-matter interaction leading to a highly sensitive biosensor. The proposed structure is analyzed using the finite element method and the corresponding transmission and reflection spectra are calculated. According to the presented results, a sensitivity of as high as 550 nm/RIU, linearity R <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> value of 0.999 with a figure of merit (FOM) more than 378 RIU <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">−1</sup> around the operating wavelength of 1550 nm are obtained. This is the largest FOM ever reported for a polarization-insensitive biosensor. Such a large FOM accompanied by high sensitivity and linearity make our proposed graphene-based biosensor promising for the effective detection of biomolecules like hemoglobin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.