Abstract
A flexible ultraviolet (UV) photodetector based on ZnO nanorods (NRs) as nanostructure sensing materials integrated into a graphene (Gr) field-effect transistor (FET) platform is investigated with high performance. Based on the negative shift of the Dirac point (VDirac) in the transfer characteristics of a phototransistor, high-photovoltage responsivity (RV) is calculated with a maximum value of 3 × 10(8) V W(-1). The peak response at a wavelength of ∼365 nm indicated excellent selectivity to UV light. The phototransistor also allowed investigation of the photocurrent responsivity (RI) and photoconductive gain (G) at various gate voltages, with maximum values of 2.5 × 10(6) A W(-1) and 8.3 × 10(6), respectively, at a gate bias of 5 V. The UV response under bending conditions was virtually unaffected and was unchanged after 10,000 bending cycles at a bending radius of 12 mm, subject to a strain of 0.5%. The attributes of high stability, selectivity, and sensitivity of this flexible UV photodetector based on a ZnO NRs/Gr hybrid FET indicate promising potential for future flexible optoelectronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.