Abstract

Organometal halide perovskites are new light-harvesting materials for lightweight and flexible optoelectronic devices due to their excellent optoelectronic properties and low-temperature process capability. However, the preparation of high-quality perovskite films on flexible substrates has still been a great challenge to date. Here, a novel vapor-solution method is developed to achieve uniform and pinhole-free organometal halide perovskite films on flexible indium tin oxide/poly(ethylene terephthalate) substrates. Based on the as-prepared high-quality perovskite thin films, high-performance flexible photodetectors (PDs) are constructed, which display a nR value of 81 A W-1 at a low working voltage of 1 V, three orders higher than that of previously reported flexible perovskite thin-film PDs. In addition, these flexible PDs exhibit excellent flexural stability and durability under various bending situations with their optoelectronic performance well retained. This breakthrough on the growth of high-quality perovskite thin films opens up a new avenue to develop high-performance flexible optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.