Abstract

Although versatile deformation, high flexibility, and environmental friendliness of electrochemical actuators (EAs) have made them promising in bioinspired soft robots and biomedical devices, the relatively high driving voltages unfortunately impose great restrictions on their applications in low-energy and human-friendly electronics. Here, we find that the uses of a mixed electronic-ionic conductive metal-organic framework (c-MOF), i.e., Ni3(hexaiminotriphenylene)2 (Ni3(HITP)2), largely lower the driving voltage of EAs. The as-fabricated EA can work under a driving voltage as low as 0.1 V, representing the lowest value among those for the c-MOF-based EAs reported so far. The Ni3(HITP)2-based EA shows an excellent actuation performance such as a high bending strain difference of 0.48% (±0.5 V, 0.1 Hz) and long-term durability of >99% after 15,000 cycles due to the improved conductivity up to 1000 S·cm-1 and double-layer capacitance as high as 176.3 F·g-1 stemming from the mixed electronic-ionic conduction of Ni3(HITP)2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.