Abstract

The Small Tight Aspect Ratio Tokamak (START) [A. Sykes et al., Nucl. Fusion 32, 769 (1994)] spherical tokamak has recently achieved the record value of toroidal β∼30% in a tokamak-like configuration. The improvements that have made these results possible are presented along with a description of the global equilibrium parameters of the discharges. The ideal magnetohydrodynamic (MHD) stability of these discharges is analyzed, and they are found to be in close proximity to both the ballooning limit and the external current driven kink limit, but they are found to be far from the pressure driven external kink limit. Disruptivity for a range of shots is not correlated with the normalized β limit, but does correlate well with the empirical high-li disruption limit. The transport properties of these high-β equilibria are analyzed and compared to conventional tokamak scaling laws and transport models. The global transport is at least as good as that predicted by the ITER97-ELMy (edge-localized) scaling law. The local ion transport is in good agreement with that predicted by neoclassical models. The electron transport is anomalous, showing rough agreement with the Lackner–Gottardi transport model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.