Abstract

Hierarchical sulfonated graphene nanosheet/carboxylated multiwalled carbon nanotube/polyaniline (sGNS/cMWCNT/PANI) nanocomposites were synthesized through an interfacial polymerization method. Activated porous graphene (aGNS) was prepared by combining chemical foaming, thermal reduction, and KOH activation. Furthermore, we have successfully fabricated an asymmetric supercapacitor (ASC) using sGNS/cMWCNT/PANI and aGNS as the positive and negative electrodes, respectively. Because of its unique structure, high capacitive performance, and complementary potential window, the ASC device can be cycled reversibly at a cell voltage of 1.6 V in a 1 M H2SO4 aqueous electrolyte, delivering a high energy density of 20.5 Wh kg(-1) at a power density of 25 kW kg(-1). Moreover, the ASC device also exhibits a superior long cycle life with 91% retention of the initial specific capacitance after 5000 cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call