Abstract

The liquid metal battery (LMB) is an attractive chemistry for grid-scale energy-storage applications. The full-liquid feature significantly reduces the interface resistance between electrode and electrolyte, endowing LMB with attractive kinetics and transport properties. Achieving a high energy density still remains a big challenge. Herein, we report a low-melting-point antimony–bismuth-tin positive electrode for LMB with high energy density and excellent rate performance for the first time. The electromotive force of Li||Sb–Bi–Sn system is determined by Li||Sb and Li||Bi chemistries. The Sn component plays a bifunctional role in the chemistry, decreasing the melting point of Sb–Bi–Sn alloy and providing rapid lithium diffusion paths for the electrode reaction. The ternary feature of the positive electrode ensures a low Sn concentration for the eutectic requirement of the positive electrode working at moderate temperature (500 °C). The stepwise reaction characteristics of Sb and Bi provides a dynamic micr...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.